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Constrained dynamics of a polymer ring enclosing a constant area
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The dynamics of an ideal polymer ring enclosing a constdgebraicarea is studied. The constraint of a
constant area is found to couple the dynamics of the two Cartesian components of the position vector of the
polymer ring through the Lagrange multiplier function which is time dependent. The time dependence of the
Lagrange multiplier is evaluated in a closed form both at short and long times. At long times, the time
dependence is weak, and is mainly governed by the inverse of the first mode of the area. The presence of the
constraint changes the nature of the relaxation of the internal modes. The time correlation of the position
vectors of the ring is found to be dominated by the first Rouse mode which does not relax even at very long
times. The mean square displacement of the radius vector is found to be diffusive, which is associated with the
rotational diffusion of the ring.
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I. INTRODUCTION sembles. The static equilibrium studies in these two en-

The equilibrium statistics of a planar Brownian motion Sémbles were carried out by Rudnick and Gaspari, where
enclosing a constant area was first studied by Lévy in 1948vo-dimensional vesicles were described using “pressurized”
with a view to obtain the probability distribution function for random walks [11]. Although the effects due to self-
the algebraic area[1,2]. A simple analogy to topologically avoidance were completely neglected, the latter studies com-
constrainedentangledl polymers, which can approximately pared well with the scaling predictions of the numerical stud-
be represented by a planar random walk constrained to eries by Leibleret al.[10] in certain regimes. The dynamics of
close a constant area, was later pointed out by Brereton ar@ polymer ring(closed random walkenclosing a constant
Butler [3]. To describe the configurational and mechanicalarea can, therefore, be regarded as a very sirgeeoth-
properties of these polymers, they readdressed this problearden model to describe the dynamics of a two-dimensional
using discrete Gaussian chains. An exact expression for thégsicle bounded by a one-dimensional lipid membrane, the
probability distribution function was subsequently obtainedperimeter of which undergoes randomly kicked motion due
using continuous models for Gaussian chd#h$). to the stochastic thermal forces from the solvent; the osmotic

Most of the studies on constrained polymer rings havepressure difference between the two sides of the membrane
been restricted to static equilibrium behavior. However, thekeeps the area constant at all times. It is more appropriate to
dynamics of a polymer ring constrained to enclose a constarttescribe the dynamics of vesicles in the constant-area en-
area can serve as a useful model in several different areas 8¢mble since vesicles, when subjected to Brownian motion,
statistical physics. The Rouse dynamics of a highly dens€o not undergo volume change, i.e., area change in two di-
ensemble of long polymer chains, in general, is a simple anghensions. The constraint of constant area can be enforced by
well known example of the constrained dynamics due to théntroducing a time dependent Lagrange multiplier in the sto-
presence of entanglements. The highly nonlocal nature ofhastic equations for a polymer ring. The Lagrange multi-
these constraints renders the analytical solution of the protplier, therefore, plays the role of the time dependent differ-
lem difficult. Therefore, the dynamics of polymer melts is ential pressure, the dynamics of which ensures that the area
mainly studied by phenomenological tube modgg$ and  is constant at all times.
their extensiong7]. For a polymer ring, on the other hand,  The technical difficulties involved in treating the con-
analogies with topologically constrained loops can be realstrained dynamics of a polymer ring arise from the global
ized at a more formal levd3]. The mathematical formula- nature of the area constraint. Additionally, since the con-
tion of the constant area constraint is strongly related, fostraint of a constant area has to be satisfied at eachttithe
instance, to the Gaussian invariance of the entangled loopdynamical behavior of the two Cartesian components of a
[6], and topological problems concerning the writhe of aspatial vectorr(s,t)=[r,(s,t),r,(s,t)] at any points along
polymer ring[8]. Some connections with rings enclosing to- the curve are no longer independent—the rigid constraint of
pological obstacles can also be discussed within a simila@ constant area strongly couples the two coordinates through
framework[9]. the Lagrange multiplier. The time dependence of the latter

As another instance, a self-avoiding polymer ring enclosimakes the analytical solution of the stochastic equations dif-
ing a two-dimensional volume is a simple model to describdicult.
the equilibrium properties of two-dimensional vesicl&§). In a more general context, the present problem belongs to
A finite pressure differential between the interior and exteriorthe comparatively less understood field of stochastic dynam-
of the one-dimensional membrane keeps the enclosed ar@z with rigid constraints. Even in a more specific case of the
constant. As a result two-dimensional vesicles can be moddynamics of polymers with rigid constraints, the literature is
eled both in the constant pressure and constant-area emainly restricted to the Kirkwood theory for hydrodynamics
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and the dynamics of semiflexible polymdig. One reason in such a way that closed random walks of only a given
for the limited literature on such systems is the technicaktonstant areé contribute to the partition function. Since the
difficulty involved in dealing with dynamical problems with sign of the aredas defined by Eq(1)] depends on the ori-
rigid constraints. The nature of the difficulty become appar-entation of the contour, the constraint restricts the magnitude
ent in the field-theoretic formulation of the dynamical prob- of the area but has no control over the shape of a ring. The
lem, where the presence of any constraint changes the nuratter implies that a symmetric “figure of eight” has alge-
ber of dynamical variables and adds the Lagrange multipliebraic area zero and a random wal&aussian chajnwith a
to the set of variables. Any functional formulation of the large number of wiggles along its contour length will un-
dynamics of the constrained system is, therefore, altered bgergo many cancellations to keep the average area constant
an additional Jacobian, which is difficult to determine. In[3].
some cases the introduction of noncommuting Grassmann The delta function in Eq(2) can be Fourier transformed,
variables can facilitate a solutiqd2]. For the present prob- i.e., S(A{r}—-A)=[dgexdig(A{r}—-A)], such thag is a vari-
lem, however, we show that the nature of the area constrairdble conjugate té. The probability distributiorP(A,N) can
is such that a simple Langevin description suffices and ahen be determined for a discrete closed random walk using
field-theoretic formulation is not necessary. normal mode analysi§3] or its continuous representation
Within the Langevin description, the area constraint isusing functional integratiorj4,5]; it is given by P(A,N)
accounted for by the Lagrange multiplier function which is =[2Nk? cos#(27A/Nb?) ], which has the asymptotic be-
time dependent. The time dependence of the Lagrange Mukavior of exg—47A/Nb?) for A/NB?>1.
tiplier can be calculated in a closed forfwhich is quite The constrained dynamics of a constant area can be
unusual for the problems of this natlifer an initial pertur-  treated by the method of Lagrange multipligég; the idea is
bation of the area modes and allows us to solve the couple@ add the constraining force explicitly in the Langevin equa-
stochastic equations for the polymer ring. It is shown that thgjon_ The constraint of a constant area when introduced using
dynamics of a polymer ring enclosing constant area is mainly | agrange multiplier functioi(t) produces a coupling be-

governed by the lowest Rouse mode. The constraint of §yeenx andy coordinates. The coupled Langevin equations
constant area is fixed by the first Rouse mdgessociated 4.0 given by

with rotation [6]), which is found to be diffusive at long )
times. The present problem is a simple and well chosen ex- ,9"x(S,t) _ 2kgT 3T4(s,1) ary(s,t)
+ kg TA(t) s +f,(st),

ample to describe several interesting aspects of stochastic ot b? 9
dynamics with rigid constraints. 3)
arys,t)  2ksT &r (st arg(s,t
Il. MODEL e y(S.Y ==% W(SY _ kBT)\(t)Xa(—S) +fy(st),

o _ ot b? 45
Let us first introduce the model we are going to study and

review some of the static results. The algebraic area enclosed (4)
by a planar random walk in a continuous representation igvhere the first term in the above equations represents dissi-

defined by pation due to the viscous forces of the solvent with friction
1 (N ar(st) coefficient{; f is the fluctuating force whose time average is

Alr(s,t)]= —J ds(r(s,t) X _> K, (1) zero. The dissipation and the fluctuations are related to each
2Jo Js other by the simplest form of the fluctuation dissipation theo-

. : . rem which dictates (fi(s,t)f(s",t"))=2LkgT 5 &(s—s") &(t
wherek is the unit vector perpendicular to tlig,y) plane; , il ! (fi(s,0fj(s' 1) =2¢ke ! (s=5) &

: s . —t’). The second term represents the elastic force due to the
r(s,t) is the position vector starting from the center of mass

of the chain(placed at the originto the segmens along a chain connectivity. The coupling shows the most trivial ef-
! P 9 ~Segmens 9 fect of the constraint: the dynamics of the two components
chain of contour lengthN, which for a ring satisfies(N,t)

. . 7 ry(s,t) andr(s,t) is no longer independent, as is the case in
=r(0,t). In statics, the constraint of a constant area is im- A{S,D (8,0 g P

. : ) . . the absence of constraint.
posed by including a delta functiof(A{r}—A) in the parti- In terms of the normal modes, ie.ry)

tion function such that the probability distribution function _ N iprs/N :
for Ais given by aél/N)fodsr(s,t)ez , Egs.(3) and(4) can be rewritten

roN
P(AN) =N f ) Dlr(s)]8(Alr} - A) é«pﬁ%(t) = = kpPrp(t) = 2ipmke TA DN oy () + (D), (5)

r
1 J N S(ﬁr(s)>2
Xexpl—= | dsg——| |, (2 drp,(t) ,
p{ b*Jo s §p—5tL = = Kp?rpy(t) + 2p kg TA (D (1) + (1), (6)
where V' is the normalization constant atwis the segment _ - -
length; the term in the exponential is the Wiener measure\ivgire (k_i 871)2232;;'\]\2;’;‘; N and £p.0=2N¢ [6]. A(t)
which accounts for the entropic elasticity of the polymer. The” ~P="= P (L),

area constraint restricts the conformations of a polymer ring Ap(1) =1 (OF (1) = 1y (O (1) (7)
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A more compact vectorial representation of the set oKA,(t))neqis explicitly time dependent. This gives us the dy-
coupled Langevin equations can be presented by using a maamical response of the Lagrange multiplier to a perturbation

trix notation, of the area modes away from their thermal equilibrium val-
d ues[13].
Lo T p(0) = —KeTM (1) - 1 (1) + (1), (8) The area conservation demands dA(t)/dt
dt =2(-ipm)dAy(t)/dt=0. This constraint when used in Eq.
where the matrixM ,(t) is defined (12) produces the following expression for the Lagrange
multiplier:
8p?m(NB?)  2ipmA(t) )
M ,(t) = , 9 3
ot ( - 2ipm\(t)  8p?m?/(NK?P) ©) i % PAL(t)
NY)=-——S—=——", 13
whose eigenvalueg, are given by ® szz pzAp(t) (13
.= 8p2m?(ND?) £ 2pm\ (1), (10) P

hich q h | . ¢ the individual whereNb?/ 4+ is the area of the first mode; it corresponds to
which correspond to the relaxation of the individual Rouse; 1an4om walk which on an average forms a circle. For a

modes of the chain the details of which will be discussed.,,4om walk to form a circle in an average sense, the cir-

later. o . _ cumference 2r should be equal tdN'2b, wherer is the
Since the area constraint is local in timeut global inthe - 4i\s of the circle: this condition determinesNY2b/ 2.

contour lengtts, the Lagrange mulltipliex depends only on 1,5 “the area of the circle on an average turns out to be

time. The time dependence of Lagrange multiplier makes th?\lbzl47r. The second mode is a symmetric figure of eight and
exact solution of the coupled Langevin equations difficult.SO

Any exact or approximate solution req_uires a complete Thé time dependence of the Lagrange multiplier can be
knowledge of the time dependencedt). Since the dynam-  jeiermined in a self-consistent way. To begin with we con-
ics of A(t) has to be such that the ar@&) has to be constant sider\(t) to be independent of time and given by /N,
at all times, we begin by'writing down t.he equaf[ion of Mo- This approximation amounts to solving Ed2), which is a
tion for the area modes itself, the details of which are Presimple first-order differential equation in time, and can be
sented below. easily solved to producdy(t)=A,(0)exp(-t/ 7,), wherer, is

the relaxation time of thepth mode given by 7,

IIl. AREA CONSERVATION =N?0?{/[8m%kgTp(p—1)]. The latter implies that all modes
except the first one, which has a constant akg®), decay
with the relaxation time of,. The same is true for the radius
To get a dynamical equation for the area of a polymerof the pth mode.

A. Dynamics of mode-dependent area

ring, we add and subtract the imaginary part of E&j.from We can now substitute the expression fy(t) into Eq.
Eqg. (5) in such a way that we get dynamical equations for(13) to see howi(t) evolves with time. In the limiting case
(rpx*irpy) and (r_p=ir _py). of A(t—o)=—47/NK?, the dominance of the first mode is

A series of simple steps will provide a stochastiange-  evident. The latter is true for all times greater than the relax-
vin type) equation for area: multiply the dynamical equation ation time r=N20%Z/[8m%kgT]. It is clear from Eq.(13) that
for (rputiryy) by (rpx—ir_p,) (that is its complex conjugate for all timest<r, the dynamics is determined by the sum-
and (r_px—ir_p,) by (rp+irp); after having added the two mation over large number of modes; for times 7, on the
equations, separate the real and the imaginary parts of ttether hand, the dynamics is dominated by the first mode.
resulting equation, which fop# 0 modes are given by the Thus, the dynamics 0f(t) is reflected in its dependence pn

following expressions respectively: modes, which decays in time in such a way thattferr it is
2 only determined byp=1.
¢ M = —[2kp? + dpmkg TA (D) ]r2(D), (11) To get an idea of the time dependence for times much less
Pt P than the relaxation time, one can replace the summation by

an integration ovelp modes in Eq.(12). In the limit of t
dA(t <7, the time dependence of the Lagrange multiplier is ap-
& dt( ) = = [2kp? + 4pmkg TN (D AL(D), (12 proximately given by\(t)~-4/NPA(r/t)¥2 It is to be
noted that in carrying out the integration over the modes, we
where Ay(t) is given by Eq.(7) and rj(t)=ry(tr_t)  have neglected the dependence ok,(0). The mode depen-
+py(Dr-py(1). It is not surprising that the above two equa- dence ofA,(0), however, does not alter the wayt) scales
tions have a similar structure since the first one represents thgith t. At short times, the nature of the decay of thn
radius and the second one the area of iite mode of the mode is reflected in the time dependenca@j. It is evident
ring. To get the time dependence)dt), we are interested in - from the expression foh,(t) that fort> 7/p?, the pth mode
the time development of the averageAyt), which in ther-  has already relaxed and does not contribute to the summation
mal equilibrium is time independent. Therefore, in writing in Eq. (13). This implies that the number of modes that con-
the dynamical equation foAy(t), we have implicitly as- tribute to the summation in Eq13) at any timet are ap-
sumed an average over a nonequilibrium ensemble in whicproximately given byp* (t) =~ (7/t)}/2. The algebraic time de-
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pendence of\(t) can easily be found from Edq12). If it is ) ) _ s o4
assumed that in this time regime some modes have already R(s) =2b /Wf dasin’(qs)/(q? + g°b%/16), (19
relaxed, therdA,./dt=0 for these modes. Then the solution 0
for the Langrange multipliex(t) is approximately given by  which is the same as E¢5.3) in the paper by Brereton and
4 Butler [3]. In writing the above expression we have taken
™ p*. (14) No=ig such that the integral can be done by contour integra-
Nb? tion; it has double poles in the complexplane given byg

won, It e nne c
Since the modes follow the Rouse relaxation, the inversfsgd;gr{;’e Er?gj.lti-gl}:rliegtgir\/ler:pbhfs TZIL V\;P;\lebl;—pw/N, the
0:_ 0 .

square root time dependencexgt) can be understood. : ; )
a b b The integral in Eq(19) can easily be evaluated and Fou-

The time dependent expression fait) when substituted . ;
P P felt) rier transformed with respect t the result can be averaged

. . ~ _ 2/7_ /7_1/2 .
into Eq. (12) yields Ay(t) ~A,(0)ePeP?™, ‘which at  yer the equilibrium probability distribution given Bp(A)
short times is a stretched exponential. The latter implies thaﬁexq—4WA/Nb2) to give the following expression:

for time t<< 7, the constraint of constant area affects the dy-

namics ofA,(t) in such a way that the lower modes grow at ) _ Np° 5 o+ (1L +s/IN)?

the expense of the higher ones leaving the total area con- (R%(9)a= 2 (1+a9)in 2+1 . (20

stant; for timet> 7 only the first mode, which attains a con-

stant value, survives. In contrast, the dynamics(@fis such  Wherea=2A/Nb?. Itis interesting to note that in equilibrium

that it decays in time a&/t)2 and att> 7 attains a constant the probability distribution, which yield§A)=Nb?/4a, im-

value of —4r/Nb2. poses the dominance of the first mode over all other modes.
This gives us an idea about the dynamics\@f), which ~ In essence it means that the presence of the area constraint

for all timest> 7, is weakly dependent on time and is mainly introduces significant deviations from the unperturbed ran-

dominated by the first mode. In what follows, we will re- dom walk for A/Nb?>1; in the latter limit the mean square

place\(t) by a time independent quantity, to discuss the distance is given byR*(s))a=~ sb(1+s/N)?/2.

statics of a closed random walk.

AME) = -

B. Statics C. Dynamics of a Gaussian chain

To recover some of the equilibrium results of the earlier As discussed in Sec. Ill, the dynamics of the Lagrange

studies from dvnamics. we beain by introducing tem Oralmultiplier function\(t), when calculated in a self-consistent
Fourier transfoym into Iéqs{S) an%l (6)_)/ 9 P way, suggests its inverse dependence on the first mode of the

area, i.e., —4/Nb’. The latter expression when substituted

— oyl plw) = - kpzrpx(w) — 2ipmAKg Trpy(w) + foy(w), into Egs.(15) and(16) produces coupled equations rig(x)
(15) andr(y), which can easily be solved to give
1
— il py(@) = = KpPrpy(w) + 2PNk Trpy(w) + foy(w). (rp(w) - T-p(- ) = 2kBT§p( [Za? + (RpPp+177]
(16) 1
. . : + . 21
The resulting coupled equation can be easily be solved to [QZJ“’Z“L K2p?(p - 1)2]> (21

calculate the following correlation:
The time-correlation function can be calculated using

1 — ot —
(ro(w) - 1_p(~ w)) = 2kgT¢, ( (rp(®) -1 -p(0)=f(da/2m)r y(w) -1 p(-w))e'.  For p=1
P P ® P\ [2w? + (kp? - 2pTksTh)?] mode the correlation function is given by
1 , ,
Nb? 8mkgTlt—t'|\ kgTlt—t’|
+ . (17 AL _ B B
[+ (<Pt zpwkswz]) A0 a0 = ool - =B — |+ =
where the angular brackets represent an average with respect (22

to the random noise. To calculate the equal time correlatior|1: 1 q h her hand. the i lati
we USE(rpif _p)y = (dw/ 21 ()T _pi(~)); the resulting ex- or p#1 modes, on the other hand, the time-correlation

pression is given by function is given by

4 p%Kg Tt - t']
ALi7 (10Tl = T exp(' :

o) - r_p(t)) = . 18 p P 2_ 212

(rp(t) - r_p(1) (22— \IN?D/16) (18) A7%(p? - 1) N?b?¢
The mean square distance of a chord starting fréén and X {COS”(%)
ending at any poins along the chain contour is defined by N“b°¢
R2(s)=[r(s)-r(0)]% In terms of the normal modes it is given 1. (4AnpkgTlt-t/|
by RA(s)=42_(rp-r_p)sir?(pars/N). In the limit of N— o +-s "(T) (23)

! . {

and p7/N— ¢, the summation can be converted to an inte-
gral to give The radius of the ring at any poistalong the curve is given
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by R(s,t)=r(s,t)—ry(t), wherery(t) is the position of the D
center of mass at time defined asro(t):(llN)fB‘dsr(s,t). ‘

The time correlation of the radii at two different times in

terms of the normal modes is given HR(s,t)-R(s,t’))

:4E::l<rp(t)-r_p(t’)>. Since the relaxation time associated .

with the first mode, that is=N’b?(/87°kgT, is the longest '
relaxation time of the correlation function, it corresponds to

the rotational relaxation timgs]. For all times greater than

the relaxation time, that is> 7, the dynamics is dominated Simple loop A =4 Complex loop A =X sign(4)) 4;
by the first Rouse mode, which is diffusive. The mean square '
displacement of the radiuR(N,t) is given by FIG. 1. A schematic representation of a simple and complex

8k.T loop depicting thealgebraicarea enclosed by a closed self-avoiding
alt (24) and random walk, respectively. The positive and negative signs de-
N¢ note the orientation of the contour.

([R(N,t) =R(N,0%) =

where at long times it corresponds to the rotational diffusion ) ) )

of the ring; the rotational diffusion constant is given by tonian. However, the inclusion of such a potential makes the
D,o=2ksT/NZ. The mean square displacement of the centefesulting dynamical equations nonlinear and difficult to treat

of mass, on the other hand, is estimated by k@ mode, analytically. . _

i.e., ([ro(t)-ro(0)])=4ksTt/(N¢), at long times the self- Although the excluded volume interactions are conceptu-

diffusion constant of the center of mass of the ring is given@!ly Important to the present problem, they do not change the
by Dy=ksT/N¢ [6]. The rotational diffusion constant is basic ideas of the Gaussian theory. The main reason for this
therefore. twice of the diffusion constant of the center ofc@n be seen in the nature of the area constraint itself, which

mass of the ring. It is not surprising, however, that both the0€S not couple to the densities. In particular, the area con-
diffusion constants have Rouse type scaling since in botftraint leads to terms which are given by the Cartesian com-

cases the the friction coefficient is determined by the RousBOnents of the chain vector itself and the bond vector, i.e.,
friction N¢. The diffusion constants for thp=0 diffusion the derivative of the chain vector with respect to the contour

and the area preservimg=1 rotation must, therefore, have variables. This implies. that thf—} cqnstraint does not couple to
the same Rouse type scaling. the excludgd volume mteracpcﬂgwep by .the.square of _the
Since the area constraint couples thandy modes, the Ipcal density. Therefore, a simple Ilnea.nzat|on_ approxima-
Cross correlations, i.e(s p(H)r _p,(t')), turn out to be nonzero. tion accounts for th_e excluded volume interactions in an gf-
fective way[6], and includes the excluded volume effects in
gt‘%e parametek, of Egs.(5) and (6), which is given byk,
~kgTp*?/N?"b?, where v=3/5 for aself-avoiding chain;
She first term on the right-hand side of E¢S) and(6) con-
taining p? is replaced byp*?.
N A similar analysis shows that within the linearized ap-
AT : . proximation the presence of the effective excluded volume
In the latter study the dllstrlbut!on of the chgln ends IS 8Cinteractions changes the nature of the mode relaxation. At
fr?émtmeg;g_rﬁtg dseggfgr:lis;?te;etgfIdb;heg;{r:’\' hrﬁgngﬁiimQSEOHQ times, the first mode of the area remains2 constant, but
consistently{15]. In dynamics it amounts to the dominance aIIh other~m|\c|)2<?flsb2d</elc(:a_l)_/ afpgt)~Ap(()t)r? xd t%(p hl)téﬂ’.
of the first mode, which does not relax, and is associated’ o' T _ £ B o ®, on € ofher hand, 1S
with the diffusion of the chain end in brushes. In the presen~'ven by )‘(tz),,fl_llN b*. For1/1+azIVI tumes t<r, AF’(B
study although the imposition of area constraint through the Ap(q)zfl)((g;f t/Hexgd-p(t/n***]  and A=
time dependent Lagrange multiplier and its determination_(t/T) o . )
from the dynamical equations is of very different nature, the At1ong times the time correlation of all modes except the
dominance of the firstRouse mode, as also seen in the fIrSt one, which is diffusive, is given by

dynamics of polymer brushes, is interesting.
N2vb2p2v—1 [{ p2v+lkBT|t _ tl| )

The equal time correlation amounts to estimating the avera
of Ay(t), which can easily be evaluated using E@). The
summation ovep modes defines the average area, which i
given by (A(t))=Nb?/ 4.

The dominance of the diffusive first mode has been see
in a very different context of grafted polymer brustéag].

<rp(t) ' r—p(t,)> =

Ay 2v+12
D. Dynamics of a self-avoiding chain (p™-1) N="*th?(
So far our study has been restricted to understanding the % | co I,(pkBT“ —t'|>
dynamics of a Gaussian chairandom walk constrained to N2 1p2;

enclose a constant algebraic area, which is represented by a 1 Ak Tit~ |

complex loop in Fig. 1. To address the more realistic case of +—gi %L)} (25)
a self-avoiding chain enclosing a constant arsample p*’ G e

loop in Fig. 1), we need to account for the excluded volume

interactions through an additional potential,U The mean square displacement of the raddhl,t) is still
=ZvkgT[hds[§ds 8[r(s,t)-r(s',1)], in the chain Hamil- diffusive and scales a§R(N,t)~R(N,0)]2 =~kgTt/(NZ).
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Since the physical relevance of the imposition of an areatraint changes the nature of relaxation of these modes dra-
constraint is not so much in the particular value of the areamatically. At long times the dynamics is completely deter-
but in its conservation, we believe the present approach tmined by the firsfRous¢ mode which does not relax. The
describe the dynamics of a Gaussian émgproximateself-  first mode is associated with the rotation of the ring; the
avoiding ring captures the essential physics of the problemmean-square displacement of the radius at long times is
The present description will, however, benefit from computefound to be diffusive. The effects due to self-avoidance,
simulation studies where the effects due to excluded volumehen included in an effective way, lead to the similar pre-

interactions can be included in a more rigorous way. dictions with different relaxation time scales.
Some of thelocal) problems associated with the complex
IV. CONCLUSIONS loops (see Fig. 1 formed by ideal Gaussian chains can be

] taken care of by accounting for semiflexibility. In a future

In summary, the present theory illustrates the effects of &pjication we are going to extend the present formalism to
relatively simple global constraint on the stochastic dynam-study the static and dynamical properties of semiflexible
ics of noninteracting polymer chains. We show that the Presfoops constrained to enclose a constant A&
ence c_)f the area constraint couples th_e dynamics of the Although the idea was to present a general theory for the
Cartesian components of the spatial vecto(s,t)  gynamics of area preserving systems, the present approach
=[rx(s,1),r,(s,t)] through the time dependent Lagrange mul-can serve as a simple description to understand some of the
tiplier. The time dependence of the Lagrange multiplier candynamical aspects of polymer systems under topological
be determined as a dynamical response to the initial pertugonstraints, entanglements and two-dimensional vesicles—
bation of area modes such that the conditik(t)/dt=0is  systems where the area conservation must be explicitly ac-
satisfied at all times. At very short times, thattig 7, the  counted.
Lagrange multiplier decays slowly with an inverse depen-
dence on time, where=N?b?//8m%kgT. For long times, that ACKNOWLEDGMENTS
is t> 7, the Lagrange multiplier is mainly determined by the
inverse of the first mode of the area, which on an average is The authors appreciate earlier useful discussions with M.
arandom walk about a circle. As opposed to the relaxation o6. Brereton about this problem. Discussions with A. Gros-
the internal modes of a ring without constraint, the area conberg, M. Otto, and R. Adhikari are gratefully acknowledged.
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