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The dynamics of an ideal polymer ring enclosing a constantalgebraicarea is studied. The constraint of a
constant area is found to couple the dynamics of the two Cartesian components of the position vector of the
polymer ring through the Lagrange multiplier function which is time dependent. The time dependence of the
Lagrange multiplier is evaluated in a closed form both at short and long times. At long times, the time
dependence is weak, and is mainly governed by the inverse of the first mode of the area. The presence of the
constraint changes the nature of the relaxation of the internal modes. The time correlation of the position
vectors of the ring is found to be dominated by the first Rouse mode which does not relax even at very long
times. The mean square displacement of the radius vector is found to be diffusive, which is associated with the
rotational diffusion of the ring.
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I. INTRODUCTION

The equilibrium statistics of a planar Brownian motion
enclosing a constant area was first studied by Lévy in 1940
with a view to obtain the probability distribution function for
the algebraic areaf1,2g. A simple analogy to topologically
constrainedsentangledd polymers, which can approximately
be represented by a planar random walk constrained to en-
close a constant area, was later pointed out by Brereton and
Butler f3g. To describe the configurational and mechanical
properties of these polymers, they readdressed this problem
using discrete Gaussian chains. An exact expression for the
probability distribution function was subsequently obtained
using continuous models for Gaussian chainsf4,5g.

Most of the studies on constrained polymer rings have
been restricted to static equilibrium behavior. However, the
dynamics of a polymer ring constrained to enclose a constant
area can serve as a useful model in several different areas of
statistical physics. The Rouse dynamics of a highly dense
ensemble of long polymer chains, in general, is a simple and
well known example of the constrained dynamics due to the
presence of entanglements. The highly nonlocal nature of
these constraints renders the analytical solution of the prob-
lem difficult. Therefore, the dynamics of polymer melts is
mainly studied by phenomenological tube modelsf6g and
their extensionsf7g. For a polymer ring, on the other hand,
analogies with topologically constrained loops can be real-
ized at a more formal levelf3g. The mathematical formula-
tion of the constant area constraint is strongly related, for
instance, to the Gaussian invariance of the entangled loops
f6g, and topological problems concerning the writhe of a
polymer ringf8g. Some connections with rings enclosing to-
pological obstacles can also be discussed within a similar
frameworkf9g.

As another instance, a self-avoiding polymer ring enclos-
ing a two-dimensional volume is a simple model to describe
the equilibrium properties of two-dimensional vesiclesf10g.
A finite pressure differential between the interior and exterior
of the one-dimensional membrane keeps the enclosed area
constant. As a result two-dimensional vesicles can be mod-
eled both in the constant pressure and constant-area en-

sembles. The static equilibrium studies in these two en-
sembles were carried out by Rudnick and Gaspari, where
two-dimensional vesicles were described using “pressurized”
random walks f11g. Although the effects due to self-
avoidance were completely neglected, the latter studies com-
pared well with the scaling predictions of the numerical stud-
ies by Leibleret al. f10g in certain regimes. The dynamics of
a polymer ringsclosed random walkd enclosing a constant
area can, therefore, be regarded as a very simpleszeroth-
orderd model to describe the dynamics of a two-dimensional
vesicle bounded by a one-dimensional lipid membrane, the
perimeter of which undergoes randomly kicked motion due
to the stochastic thermal forces from the solvent; the osmotic
pressure difference between the two sides of the membrane
keeps the area constant at all times. It is more appropriate to
describe the dynamics of vesicles in the constant-area en-
semble since vesicles, when subjected to Brownian motion,
do not undergo volume change, i.e., area change in two di-
mensions. The constraint of constant area can be enforced by
introducing a time dependent Lagrange multiplier in the sto-
chastic equations for a polymer ring. The Lagrange multi-
plier, therefore, plays the role of the time dependent differ-
ential pressure, the dynamics of which ensures that the area
is constant at all times.

The technical difficulties involved in treating the con-
strained dynamics of a polymer ring arise from the global
nature of the area constraint. Additionally, since the con-
straint of a constant area has to be satisfied at each timet, the
dynamical behavior of the two Cartesian components of a
spatial vectorr ss,td=frxss,td ,ryss,tdg at any points along
the curve are no longer independent—the rigid constraint of
a constant area strongly couples the two coordinates through
the Lagrange multiplier. The time dependence of the latter
makes the analytical solution of the stochastic equations dif-
ficult.

In a more general context, the present problem belongs to
the comparatively less understood field of stochastic dynam-
ics with rigid constraints. Even in a more specific case of the
dynamics of polymers with rigid constraints, the literature is
mainly restricted to the Kirkwood theory for hydrodynamics

PHYSICAL REVIEW E 71, 021801s2005d

1539-3755/2005/71s2d/021801s6d/$23.00 ©2005 The American Physical Society021801-1



and the dynamics of semiflexible polymersf6g. One reason
for the limited literature on such systems is the technical
difficulty involved in dealing with dynamical problems with
rigid constraints. The nature of the difficulty become appar-
ent in the field-theoretic formulation of the dynamical prob-
lem, where the presence of any constraint changes the num-
ber of dynamical variables and adds the Lagrange multiplier
to the set of variables. Any functional formulation of the
dynamics of the constrained system is, therefore, altered by
an additional Jacobian, which is difficult to determine. In
some cases the introduction of noncommuting Grassmann
variables can facilitate a solutionf12g. For the present prob-
lem, however, we show that the nature of the area constraint
is such that a simple Langevin description suffices and a
field-theoretic formulation is not necessary.

Within the Langevin description, the area constraint is
accounted for by the Lagrange multiplier function which is
time dependent. The time dependence of the Lagrange mul-
tiplier can be calculated in a closed formswhich is quite
unusual for the problems of this natured for an initial pertur-
bation of the area modes and allows us to solve the coupled
stochastic equations for the polymer ring. It is shown that the
dynamics of a polymer ring enclosing constant area is mainly
governed by the lowest Rouse mode. The constraint of a
constant area is fixed by the first Rouse modesassociated
with rotation f6gd, which is found to be diffusive at long
times. The present problem is a simple and well chosen ex-
ample to describe several interesting aspects of stochastic
dynamics with rigid constraints.

II. MODEL

Let us first introduce the model we are going to study and
review some of the static results. The algebraic area enclosed
by a planar random walk in a continuous representation is
defined by

Afr ss,tdg =
1

2
E

0

N

dsSr ss,td 3
]r ss,td

]s
D ·k , s1d

wherek is the unit vector perpendicular to thesx,yd plane;
r ss,td is the position vector starting from the center of mass
of the chainsplaced at the origind to the segments along a
chain of contour lengthN, which for a ring satisfiesr sN,td
=r s0,td. In statics, the constraint of a constant area is im-
posed by including a delta functiondsAhr j−Ad in the parti-
tion function such that the probability distribution function
for A is given by

PsA,Nd = NE
r 0,0

r 0,N

Dfr ssdgdsAhr j − Ad

3 expF−
1

b2E
0

N

dsS ]r ssd
]s

D2G , s2d

whereN is the normalization constant andb is the segment
length; the term in the exponential is the Wiener measure
which accounts for the entropic elasticity of the polymer. The
area constraint restricts the conformations of a polymer ring

in such a way that closed random walks of only a given
constant areaA contribute to the partition function. Since the
sign of the areafas defined by Eq.s1dg depends on the ori-
entation of the contour, the constraint restricts the magnitude
of the area but has no control over the shape of a ring. The
latter implies that a symmetric “figure of eight” has analge-
braic area zero and a random walksGaussian chaind with a
large number of wiggles along its contour length will un-
dergo many cancellations to keep the average area constant
f3g.

The delta function in Eq.s2d can be Fourier transformed,
i.e., dsAhr j−Ad=edgexpfigsAhr j−Adg, such thatg is a vari-
able conjugate toA. The probability distributionPsA,Nd can
then be determined for a discrete closed random walk using
normal mode analysisf3g or its continuous representation
using functional integrationf4,5g; it is given by PsA,Nd
=f2Nb2 cosh2s2pA/Nb2dg−1, which has the asymptotic be-
havior of exps−4pA/Nb2d for A/Nb2@1.

The constrained dynamics of a constant area can be
treated by the method of Lagrange multipliersf6g; the idea is
to add the constraining force explicitly in the Langevin equa-
tion. The constraint of a constant area when introduced using
a Lagrange multiplier functionlstd produces a coupling be-
tweenx andy coordinates. The coupled Langevin equations
are given by

z
]rxss,td

]t
=

2kBT

b2

]2rxss,td
]s2 + kBTlstd

]ryss,td
]s

+ fxss,td,

s3d

z
]ryss,td

]t
=

2kBT

b2

]2ryss,td
]s2 − kBTlstd

]rxss,td
]s

+ fyss,td,

s4d

where the first term in the above equations represents dissi-
pation due to the viscous forces of the solvent with friction
coefficientz ; f is the fluctuating force whose time average is
zero. The dissipation and the fluctuations are related to each
other by the simplest form of the fluctuation dissipation theo-
rem which dictates kf iss,tdf jss8 ,t8dl=2zkBTdi jdss−s8ddst
− t8d. The second term represents the elastic force due to the
chain connectivity. The coupling shows the most trivial ef-
fect of the constraint: the dynamics of the two components
rxss,td andryss,td is no longer independent, as is the case in
the absence of constraint.

In terms of the normal modes, i.e.,r pstd
=s1/Nde0

Ndsr ss,tde2ipps/N, Eqs.s3d and s4d can be rewritten
as

zp
drpxstd

dt
= − kp2rpxstd − 2ippkBTlstdrpystd + fpxstd, s5d

zp
drpystd

dt
= − kp2rpystd + 2ippkBTlstdrpxstd + fpystd, s6d

where k=8p2kBT/Nb2, z0=Nz and zpÞ0=2Nz f6g. Astd
=op=−`

` s−ippdApstd, where

Apstd = rpxstdr−pystd − rpystdr−pxstd. s7d
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A more compact vectorial representation of the set of
coupled Langevin equations can be presented by using a ma-
trix notation,

zp
d

dt
r pstd = − kBTM pstd · r pstd + fpstd, s8d

where the matrixM pstd is defined

M pstd = S8p2p2/sNb2d 2ipplstd
− 2ipplstd 8p2p2/sNb2d

D , s9d

whose eigenvalues,e are given by

,e = 8p2p2/sNb2d ± 2pplstd, s10d

which correspond to the relaxation of the individual Rouse
modes of the chain the details of which will be discussed
later.

Since the area constraint is local in timet but global in the
contour lengths, the Lagrange multiplierl depends only on
time. The time dependence of Lagrange multiplier makes the
exact solution of the coupled Langevin equations difficult.
Any exact or approximate solution requires a complete
knowledge of the time dependence oflstd. Since the dynam-
ics of lstd has to be such that the areaAstd has to be constant
at all times, we begin by writing down the equation of mo-
tion for the area modes itself, the details of which are pre-
sented below.

III. AREA CONSERVATION

A. Dynamics of mode-dependent area

To get a dynamical equation for the area of a polymer
ring, we add and subtract the imaginary part of Eq.s6d from
Eq. s5d in such a way that we get dynamical equations for
srpx+ ir pyd and sr−px− ir −pyd.

A series of simple steps will provide a stochasticsLange-
vin typed equation for area: multiply the dynamical equation
for srpx+ ir pyd by sr−px− ir −pyd sthat is its complex conjugated
and sr−px− ir −pyd by srpx+ ir pyd; after having added the two
equations, separate the real and the imaginary parts of the
resulting equation, which forpÞ0 modes are given by the
following expressions respectively:

zp

drp
2std
dt

= − f2kp2 + 4ppkBTlstdgrp
2std, s11d

zp
dApstd

dt
= − f2kp2 + 4ppkBTlstdgApstd, s12d

where Apstd is given by Eq. s7d and rp
2std=rpxstdr−pxstd

+rpystdr−pystd. It is not surprising that the above two equa-
tions have a similar structure since the first one represents the
radius and the second one the area of thepth mode of the
ring. To get the time dependence oflstd, we are interested in
the time development of the average ofApstd, which in ther-
mal equilibrium is time independent. Therefore, in writing
the dynamical equation forApstd, we have implicitly as-
sumed an average over a nonequilibrium ensemble in which

kApstdlneq is explicitly time dependent. This gives us the dy-
namical response of the Lagrange multiplier to a perturbation
of the area modes away from their thermal equilibrium val-
uesf13g.

The area conservation demands dAstd /dt
=ops−ippddApstd /dt=0. This constraint when used in Eq.
s12d produces the following expression for the Lagrange
multiplier:

lstd = −
4p

Nb2

o
p

p3Apstd

o
p

p2Apstd
, s13d

whereNb2/4p is the area of the first mode; it corresponds to
a random walk which on an average forms a circle. For a
random walk to form a circle in an average sense, the cir-
cumference 2pr should be equal toN1/2b, where r is the
radius of the circle; this condition determinesr =N1/2b/2p.
Thus, the area of the circle on an average turns out to be
Nb2/4p. The second mode is a symmetric figure of eight and
so on.

The time dependence of the Lagrange multiplier can be
determined in a self-consistent way. To begin with we con-
siderlstd to be independent of time and given by −4p /Nb2.
This approximation amounts to solving Eq.s12d, which is a
simple first-order differential equation in time, and can be
easily solved to produceApstd=Aps0dexps−t /tpd, wheretp is
the relaxation time of thepth mode given by tp
=N2b2z / f8p2kBTpsp−1dg. The latter implies that all modes
except the first one, which has a constant areaA1s0d, decay
with the relaxation time oftp. The same is true for the radius
of the pth mode.

We can now substitute the expression forApstd into Eq.
s13d to see howlstd evolves with time. In the limiting case
of lst→`d=−4p /Nb2, the dominance of the first mode is
evident. The latter is true for all times greater than the relax-
ation timet=N2b2z / f8p2kBTg. It is clear from Eq.s13d that
for all times t!t, the dynamics is determined by the sum-
mation over large number of modes; for timest@t, on the
other hand, the dynamics is dominated by the first mode.
Thus, the dynamics oflstd is reflected in its dependence onp
modes, which decays in time in such a way that fort@t it is
only determined byp=1.

To get an idea of the time dependence for times much less
than the relaxation timet, one can replace the summation by
an integration overp modes in Eq.s12d. In the limit of t
!t, the time dependence of the Lagrange multiplier is ap-
proximately given bylstd<−4p /Nb2st / td1/2. It is to be
noted that in carrying out the integration over the modes, we
have neglected thep dependence ofAps0d. The mode depen-
dence ofAps0d, however, does not alter the waylstd scales
with t. At short times, the nature of the decay of thepth
mode is reflected in the time dependence oflstd. It is evident
from the expression forApstd that for t@t /p2, thepth mode
has already relaxed and does not contribute to the summation
in Eq. s13d. This implies that the number of modes that con-
tribute to the summation in Eq.s13d at any timet are ap-
proximately given byp* std<st / td1/2. The algebraic time de-
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pendence oflstd can easily be found from Eq.s12d. If it is
assumed that in this time regime some modes have already
relaxed, thendAp* /dt=0 for these modes. Then the solution
for the Langrange multiplierlstd is approximately given by

lstd . −
4p

Nb2p * . s14d

Since the modes follow the Rouse relaxation, the inverse
square root time dependence oflstd can be understood.

The time dependent expression forlstd when substituted

into Eq. s12d yields Apstd<Aps0de−p2t/tepst / td1/2
, which at

short times is a stretched exponential. The latter implies that
for time t!t, the constraint of constant area affects the dy-
namics ofApstd in such a way that the lower modes grow at
the expense of the higher ones leaving the total area con-
stant; for timet@t only the first mode, which attains a con-
stant value, survives. In contrast, the dynamics oflstd is such
that it decays in time asst / td1/2 and att@t attains a constant
value of −4p /Nb2.

This gives us an idea about the dynamics oflstd, which
for all timest@t, is weakly dependent on time and is mainly
dominated by the first mode. In what follows, we will re-
placelstd by a time independent quantityl0 to discuss the
statics of a closed random walk.

B. Statics

To recover some of the equilibrium results of the earlier
studies from dynamics, we begin by introducing temporal
Fourier transform into Eqs.s5d and s6d:

− ivzprpxsvd = − kp2rpxsvd − 2ippl0kBTrpysvd + fpxsvd,

s15d

− ivzprpysvd = − kp2rpysvd + 2ippl0kBTrpxsvd + fpysvd.

s16d

The resulting coupled equation can be easily be solved to
calculate the following correlation:

kr psvd · r −ps− vdl = 2kBTzpS 1

fzp
2v2 + skp2 − 2ppkBTl0d2g

+
1

fzp
2v2 + skp2 + 2ppkBTl0d2gD , s17d

where the angular brackets represent an average with respect
to the random noise. To calculate the equal time correlation
we usekrpir−pjl=esdv /2pdkrpisvdr−pjs−vdl; the resulting ex-
pression is given by

kr pstd · r −pstdl =
Nb2/2

sp2p2 − l0
2N2b4/16d

. s18d

The mean square distance of a chord starting fromr s0d and
ending at any points along the chain contour is defined by
R2ssd=fr ssd−r s0dg2. In terms of the normal modes it is given
by R2ssd=4op=1

` sr p·r −pdsin2spps/Nd. In the limit of N→`
and pp /N→q, the summation can be converted to an inte-
gral to give

R2ssd = 2b2/pE
0

`

dqsin2sqsd/sq2 + g2b4/16d, s19d

which is the same as Eq.s5.3d in the paper by Brereton and
Butler f3g. In writing the above expression we have taken
l0= ig such that the integral can be done by contour integra-
tion; it has double poles in the complexg plane given byg
= ±4iq /b2 f3g. The latter implies that whenq=pp /N, the
Lagrange multiplier is given byl0= ±4pp /Nb2.

The integral in Eq.s19d can easily be evaluated and Fou-
rier transformed with respect tog; the result can be averaged
over the equilibrium probability distribution given byPsAd
=exps−4pA/Nb2d to give the following expression:

kR2ssdlA =
Nb2

2
s1 + a2dlnSa2 + s1 + s/Nd2

a2 + 1
D , s20d

wherea=2A/Nb2. It is interesting to note that in equilibrium
the probability distribution, which yieldskAl=Nb2/4p, im-
poses the dominance of the first mode over all other modes.
In essence it means that the presence of the area constraint
introduces significant deviations from the unperturbed ran-
dom walk forA/Nb2@1; in the latter limit the mean square
distance is given bykR2ssdlA<sb2s1+s/Nd2/2.

C. Dynamics of a Gaussian chain

As discussed in Sec. III, the dynamics of the Lagrange
multiplier functionlstd, when calculated in a self-consistent
way, suggests its inverse dependence on the first mode of the
area, i.e., −4p /Nb2. The latter expression when substituted
into Eqs.s15d and s16d produces coupled equations inrpsxd
and rpsyd, which can easily be solved to give

kr psvd · r −ps− vdl = 2kBTzpS 1

fzp
2v2 + sk2p2sp + 1d2g

+
1

fzp
2v2 + k2p2sp − 1d2gD . s21d

The time-correlation function can be calculated using
kr pstd ·r −ps0dl=esdv /2pdkr psvd ·r −ps−vdleivt. For p=1
mode the correlation function is given by

kr 1std · r −1st8dl =
Nb2

16p2expS−
8p2kBTut − t8u

N2b2z
D +

kBTut − t8u
Nz

.

s22d

For pÞ1 modes, on the other hand, the time-correlation
function is given by

kr pstd · r −pst8dl =
Nb2

4p2sp2 − 1d
expS−

4p2p2kBTut − t8u
N2b2z

D
3FcoshS4p2pkBTut − t8u

N2b2z
D

+
1

p
sinhS4p2pkBTut − t8u

N2b2z
DG . s23d

The radius of the ring at any points along the curve is given
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by Rss,td=r ss,td−r 0std, where r 0std is the position of the
center of mass at timet defined asr 0std=s1/Nde0

Ndsr ss,td.
The time correlation of the radii at two different times in
terms of the normal modes is given bykRss,td ·Rss,t8dl
=4op=1

` kr pstd ·r −pst8dl. Since the relaxation time associated
with the first mode, that ist=N2b2z /8p2kBT, is the longest
relaxation time of the correlation function, it corresponds to
the rotational relaxation timef6g. For all times greater than
the relaxation time, that ist@t, the dynamics is dominated
by the first Rouse mode, which is diffusive. The mean square
displacement of the radiusRsN,td is given by

kfRsN,td − RsN,0dg2l =
8kBTt

Nz
, s24d

where at long times it corresponds to the rotational diffusion
of the ring; the rotational diffusion constant is given by
Drot=2kBT/Nz. The mean square displacement of the center
of mass, on the other hand, is estimated by thep=0 mode,
i.e., kfr 0std−r 0s0dg2l=4kBTt/ sNzd, at long times the self-
diffusion constant of the center of mass of the ring is given
by D0=kBT/Nz f6g. The rotational diffusion constant is,
therefore, twice of the diffusion constant of the center of
mass of the ring. It is not surprising, however, that both the
diffusion constants have Rouse type scaling since in both
cases the the friction coefficient is determined by the Rouse
friction Nz. The diffusion constants for thep=0 diffusion
and the area preservingp=1 rotation must, therefore, have
the same Rouse type scaling.

Since the area constraint couples thex and y modes, the
cross correlations, i.e.,krpxstdr−pyst8dl, turn out to be nonzero.
The equal time correlation amounts to estimating the average
of Apstd, which can easily be evaluated using Eq.s7d. The
summation overp modes defines the average area, which is
given by kAstdl=Nb2/4p.

The dominance of the diffusive first mode has been seen
in a very different context of grafted polymer brushesf14g.
In the latter study the distribution of the chain ends is ac-
counted for by self-consistent-field theory which determines
the mean-field potential seen by each monomer self-
consistentlyf15g. In dynamics it amounts to the dominance
of the first mode, which does not relax, and is associated
with the diffusion of the chain end in brushes. In the present
study although the imposition of area constraint through the
time dependent Lagrange multiplier and its determination
from the dynamical equations is of very different nature, the
dominance of the firstsRoused mode, as also seen in the
dynamics of polymer brushes, is interesting.

D. Dynamics of a self-avoiding chain

So far our study has been restricted to understanding the
dynamics of a Gaussian chainsrandom walkd constrained to
enclose a constant algebraic area, which is represented by a
complex loop in Fig. 1. To address the more realistic case of
a self-avoiding chain enclosing a constant areassimple
loop in Fig. 1d, we need to account for the excluded volume
interactions through an additional potential,U
= 1

2vkBTe0
Ndse0

Nds8d fr ss,td−r ss8 ,tdg, in the chain Hamil-

tonian. However, the inclusion of such a potential makes the
resulting dynamical equations nonlinear and difficult to treat
analytically.

Although the excluded volume interactions are conceptu-
ally important to the present problem, they do not change the
basic ideas of the Gaussian theory. The main reason for this
can be seen in the nature of the area constraint itself, which
does not couple to the densities. In particular, the area con-
straint leads to terms which are given by the Cartesian com-
ponents of the chain vector itself and the bond vector, i.e.,
the derivative of the chain vector with respect to the contour
variables. This implies that the constraint does not couple to
the excluded volume interactionsgiven by the square of the
local densityd. Therefore, a simple linearization approxima-
tion accounts for the excluded volume interactions in an ef-
fective wayf6g, and includes the excluded volume effects in
the parameterkp of Eqs. s5d and s6d, which is given bykp
<kBTp1+2n /N2nb2, wheren=3/5 for a self-avoiding chain;
the first term on the right-hand side of Eqs.s5d ands6d con-
taining p2 is replaced byp1+2n.

A similar analysis shows that within the linearized ap-
proximation the presence of the effective excluded volume
interactions changes the nature of the mode relaxation. At
long times, the first mode of the area remains constant, but
all other modes decay asApstd<Aps0dexpf−psp2n−1dt /tg,
where t<N2n+1b2z /kBT. lstd, on the other hand, is
given by lstd<−1/N2nb2. For all times t!t , Apstd
<Aps0dexps−p2n+1t /tdexpf−pst /td1/1+2ng and lstd<
−st /td−2n/s1+2nd.

At long times the time correlation of all modes except the
first one, which is diffusive, is given by

kr pstd · r −pst8dl <
N2nb2p2n−1

sp4n − 1d
expS−

p2n+1kBTut − t8u
N2n+1b2z

D
3 FcoshSpkBTut − t8u

N2n+1b2z
D

+
1

p2nsinhS4p2pkBTut − t8u
N2n+1b2z

DG . s25d

The mean square displacement of the radiusRsN,td is still
diffusive and scales askfRsN,td−RsN,0dg2l<kBTt/ sNzd.

FIG. 1. A schematic representation of a simple and complex
loop depicting thealgebraicarea enclosed by a closed self-avoiding
and random walk, respectively. The positive and negative signs de-
note the orientation of the contour.
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Since the physical relevance of the imposition of an area
constraint is not so much in the particular value of the area
but in its conservation, we believe the present approach to
describe the dynamics of a Gaussian andsapproximated self-
avoiding ring captures the essential physics of the problem.
The present description will, however, benefit from computer
simulation studies where the effects due to excluded volume
interactions can be included in a more rigorous way.

IV. CONCLUSIONS

In summary, the present theory illustrates the effects of a
relatively simple global constraint on the stochastic dynam-
ics of noninteracting polymer chains. We show that the pres-
ence of the area constraint couples the dynamics of the
Cartesian components of the spatial vectorr ss,td
=frxss,td ,ryss,tdg through the time dependent Lagrange mul-
tiplier. The time dependence of the Lagrange multiplier can
be determined as a dynamical response to the initial pertur-
bation of area modes such that the conditiondAstd /dt=0 is
satisfied at all times. At very short times, that ist!t, the
Lagrange multiplier decays slowly with an inverse depen-
dence on time, wheret=N2b2z /8p2kBT. For long times, that
is t@t, the Lagrange multiplier is mainly determined by the
inverse of the first mode of the area, which on an average is
a random walk about a circle. As opposed to the relaxation of
the internal modes of a ring without constraint, the area con-

straint changes the nature of relaxation of these modes dra-
matically. At long times the dynamics is completely deter-
mined by the firstsRoused mode which does not relax. The
first mode is associated with the rotation of the ring; the
mean-square displacement of the radius at long times is
found to be diffusive. The effects due to self-avoidance,
when included in an effective way, lead to the similar pre-
dictions with different relaxation time scales.

Some of theslocald problems associated with the complex
loops ssee Fig. 1d formed by ideal Gaussian chains can be
taken care of by accounting for semiflexibility. In a future
publication we are going to extend the present formalism to
study the static and dynamical properties of semiflexible
loops constrained to enclose a constant areaf16g.

Although the idea was to present a general theory for the
dynamics of area preserving systems, the present approach
can serve as a simple description to understand some of the
dynamical aspects of polymer systems under topological
constraints, entanglements and two-dimensional vesicles—
systems where the area conservation must be explicitly ac-
counted.
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